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t Depanment of Physics, Faculty of Science, University of Zagreb, 41000 Zagreb. Republic 
of Croatia, Yugoslavia 
i Kernfysisch Versneller Instituut, Rijksuniversiteit, 9747AA Graningen. The Netherlands 

Received 20 May 1991 

Abstract. We investigate the energy-level statistics in dependence on the boson number 
and the underlying classical motion for a system of collective states of zero angular 
momentum i n  ?-soft nuclei described in the framework of the O(6)  dynamical symmetry 
of the interacting boson model. This presents a relatively complex test case for relations 
between classical regularlchaas, dynamical symmetry and energy-level statistics. The 
classical limit is integrabledue toan additional constant ofmation P,. butthecorresponding 

orthogonal ensemble statistics. However. the boson number N,, which plays the role of 
Planck constant in semiclassical approximation, appears as a control parameter ofquantum 
chaos, and the energy level statistics asymptotically approaches Poisson statistics with 
increasing boson number, i.e. with decreasing volume of the unit cell of quantum space. 
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been initiated by a prediction that quantal energy spectrum of a dynamical system 
consists of a regular and chaotic part (Percival 1973). Bohigas et al (1984) have 
formulated a conjecture that a quantal energy spectrum is characterized by Poisson 
statistics when the corresponding classical system is regular and by Gaussian orthogonal 
ensemble (GOE) statistics when it is chaotic. This conjecture was confirmed in studies 
of low-dimensional systems (Seligman er al1985, Wintgen and Friedrich 1987, Meredith 
et al 1988), although some exceptions are known (Cheon and Cohen 1989, Balasz and 
Voros 1986, Casati et al 1985, Berry and Tabor 1977, Eckhardt 1988). For A3 statistics 
there appear systematic deviations from GOE due to saturation which was explained 
using semiclassical arguments (Berry 1985). On the other hand, attention has been 
paid to the investigation of connections between dynamical symmetry and chaos 
(Robnik 1981, Zhang et a1 1988, 1989, Alhassid er a/ 1990, Paar and VorkapiC 1988, 
1990). Zhang et a /  (1989) have formulated a framework with a criterion for quantum 
integrability associated with dynamical symmetry. In this framework, the chaotic 
motion is associated with breaking of dynamical symmetry. 

A convenient model to study these concepts is the interacting boson model ( I B M )  

(Arima and lachello 1975) which describes the structure of nuclei. This model has a 
real physical background: it describes the low-lying nuclear phenomenology accounting 
for collectivity. Furthermore, it has a microscopic basis and provides a framework for 
algebraic description including dynamical symmetries. In  m M  one considers a system 
of N ,  bosons that can occupy six levels, namely an s level (with angular momentum 
L = 0) and a five-fold degenerate d, ( L  = 2) level, interacting through a Hamiltonian 
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that can be expressed in terms of 36 generators S+S, d:s, std, and d i &  of the group 
U(6) (Arima and Iachello 1975, 1987). Here, p and U denote the angular momentum 
projections and av=(-1)"d-". The chaotic features of I B M  have been previously 
investigated (Paar and VorkapiC 1988, 1990, Alhassid er a/ 1990). It was found that 
near the SU(3) and O(6) dynamical symmetries of I B M  the fluctuation behaviour of 
the states with angular momentum L Z 2  is close to Poisson statistics and changes 
gradually to the GOE statistics as the interaction strength in I B M  Hamiltonian moves 
away from these dynamical symmetries (Alhassid el a/ 1990). Although the underlying 
classical Hamiltonian was not investigated, Monte Carlo calculations applied to boson 
condensates gave an evidence for classical motion underlying the SU(3) and O(6) 
dynamical symmetries (Alhassid el a/ 1990). These results were in agreement with the 
criterion by Zhang et a /  (1989) in conjunction with the conjecture by Bohigas er al 
(1984). On the other hand, a recent investigation of the states with angular momentum 
zero in rotational nuclei described by the SU(3) dynamical symmetry of i B M  has 
revealed a case where both the criterion by Zhang er a/ and the conjecture by Bohigas 
er a /  are violated (Paar el a/  1991). In this paper we investigate the O(6)  dynamical 
symmetry of IBM, which turns out to have a different chaotic behaviour. 

The Hamiltonian for the O(6) limit of I B M  can be presented in the form (Dieperink 
1982) 

with the O(6) pairing operator 

the O(5) Casimir invariant 
5-:((dt2)'3). -~ (d'a)"'+hL'". L'"} 

and the angular momentum operator 

L:' = m ( d + i )  :I. 

(3) 

(4) 

The quantities xo, x5 and x ,  are the interaction strengths and NE is the total number 
of s and d bosons. 

The classical Hamiltonian corresponding to the quantal Hamiltonian (1) was 
obtained (Dieperink ef a/ 1980, Ginocchio and Kirson 1980) as the coherent state 
expectation value of the quantum operator (1) 

HZi6 '=(NR. a l H o ' " ~ N . , a ) / N ~  ( 5 )  

with 

The resulting classical Hamiltonian is 

Here, p and y are the intrinsic coordinates, having a physical meaning of quadrupole 
shape parameters, while Pp and P, are their conjugate momenta. 
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The classical equation of motion associated with the Hamiltonian (7 )  are 

(8) 

(9) 

(10) 

8 = p  xo 2 pa 

fB = -3 (pP; -2P( l -@))  2 

XS 

3 
i .=-P,  

f7 = 0. (11) 

Due to ( l l ) ,  the quantity P, is a constant of motion. Thus, for a system (7) with two 
degrees of freedom we have two constants of motion, i.e. the momentum P, in addition 
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corresponds 10 Poisson Statistics, in dependence on the boson number N,, As a measure 
ofdeviations we use d , , = Z i : - l  [ L / L - A , ( L ) ] .  ( b )  Brodyparameterw forthecalculated 
NNS distribution in dependence on the boson number N,. The values of w corresponding 
to Poisson and COE statistics are 0 and I ,  respectively. 

to the energy. Consequently, the system is integrable. This result for a system with 
dynamical symmetry is in  accordance with the criterion by Zhang et a /  (1989). 

Let us now investigate the energy-level statistics for the quantum mechanical 
Hamiltonian (1). Being associated with an underlying regular classical motion (7), the 
energy-level statistics for the eigenvalues of (1) should be of Poisson type according 
to the conjecture by Bohigas er a /  (1984). The calculated fluctuation measures, nearest- 
neighbour spacing (NNS) distribution and Dyson-Mehta A3 statistics, are presented in 
the first row of figure i for the boson number N H  = 20. A s  seen, they are cioser to the 
COE than to Poisson statistics. (For the NNS distribution the value of Brody parameter 
is w =0.81.) Thus, the energy-level statistics for O(6)  dynamical symmetry of IBM 

violates the conjecture by Bohigas er a /  (1984). 
For heavy nuclei with protons and neutrons in the respective open shells the boson 

number is N , , s 2 0 .  A particularly convenient feature of I B M  is that it provides an 
opporiunity io siudy the behaviour of energy-ievei siaiisiics as ihe sysiem evoives 
towards the classical limit. Namely, the boson number N, plays the role of a control 
parameter for semiclassical approximation, with Ns + a) corresponding to the classical 
limit (Dieperink et a /  1980, Ginocchio and Kirson 1980). Thus, l / N B  plays a role of 
h in a mean field approximations (Alhassid et a /  1990) and the volume of the unit 
cell in the quantum space is proportional to 11 N u .  In the second to fifth row of figure 
I we presenr N N S  uIsmouiions aiiu oj srausucb IUL rric-reabriig vaiucs U, tu=  UUWII 

number N,. As seen, with increase of N, the energy-level statistics shows a tendency 
towards Poisson statistics. However, this suppression of chaos is not monotonic. 
Instead, we find, irregular oscillations around the Poisson statistics as shown in figure 
2. The physical significance of these oscillations around the Poisson statistics has to 
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be explored. It is tempting, however, to conclude that the energy-level statistics 
asymptotically approaches the Poisson statistics in the limit of large N,. 

In conclusion, we have found the following features of Ot states in y-soft nuclei 
described by the O(6) dynamical symmetry of I B M .  

(i) The underlying classical motion is integrable, which is in accordance with the 
criterion by Zhang et a/ (1989) on the connection between classical integrability and 
dynamical symmetry. 

(ii) The energy-level statistics is close to COE statistics, which is in contrast to the 
widely agreed conjecture by Bohigas et a/ (1984). 

(iii) With decreasing volume of the unit cell of quantum space (-l /NB), the 
energy-level statistics seems to asymptotically approach the Poisson statistics. In this 
process there appear irregular oscillations around the Poisson fluctuations measures. 
This gives a hint that the conjecture by Bohigas et a/ (1984) in conjunction with the 
criterion by Zhang et a/ (1989), although violated in the range of realistic parameter 
values, is asymptotically satisfied in the limit of large NB. i.e. of small unit cell of 
quantum space. This is in accordance with the general theory by Berry (1985) which 
gives an exact connection between energy level statistics and chaos/regularity in the 
semiclassical limit. 
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